- 1. The LCM of two numbers is 1200. Which of the following cannot be their HCF?
 - (a) 600

(b) 500

(c) 400

- (d) 200
- $7 \times 11 \times 13 + 13$ is
 - (a) a prime number
 - the a composite number
 - an odd number
 - divisible by 5.
- The decimal representation of a rational 3. number $\frac{p}{}$ is a terminating decimal only if for non-negative integers m and n, prime factors of q are of the form:
 - $(a) 2^m \times 3^n$
- (b) $3^m \times 5^n$
- (c) $3^n \times 7^n$
- (d) $2^m \times 5^n$
- The reciprocal of an irrational number 4. is:
 - (a) an integer (b) a rational
 - (c) a natural number
 - (d) an irrational

[CBSE 2012]

- After how many digits will the decimal expansion of $\frac{3}{8}$ come to an end?
 - (a) 4

(b) **3**

(c) 5

- (d) 2.
- 6. $n^2 1$ is divisible by 8, if n is:

 - (a) an integer (b) a natural number
 - (c) an odd natural number
 - (d) an even natural number
- The decimal expansion of number

$$\frac{441}{2^2 \times 5^3 \times 7} \text{ has:}$$

- ta) a terminating decimal
- (b) non-terminating but repeating
- (c) non-terminating non-repeating
- (d) terminating after two places of decimal CBSE 20121
- $\pi \frac{22}{7}$ is: 8.
 - (a) rational number
 - (b) natural number
 - (c) zero
 - (d) irrational number

- 9. 'a' and 'b' are two positive integers, where a > b and 'b' is a factor of 'a', then HCF(a, b) is:
 - (a)b

(b)a

(c)ab

- $(d) \frac{a}{h}$
- to If the HCF of two numbers is 1, then the two numbers are called:
 - (a) twin primes (b) composite

 - (c) co-primes (d) perfect numbers
- II If the LCM of 12 and 42 is 10 m + 4, then the value of 'm' is:
 - (a) 50

(b) 8

(c) $\frac{1}{5}$

- $(d) 1 \quad [CBSE \ 2012]$
- 12. The prime factor of $2 \times 7 \times 11 \times 17 \times 23$ + 23 is:
 - $\alpha \cdot 7$

(b) 11

(c. 17

- (d) 23 [CBSE 2012]

The graph of the equation $y = ax^2 + bx$ + c is an open downward parabola, if 20.A quadratic polynomial whose zeroes are 5 and - 2 is:

 $(a) a > 0 \qquad (b) a < 0$

(c) a = 0 (d) a = 1.

The graph of the equation $y = ax^2 + bx + c$ is an open upward parabola, if

(a) a > 0

(b) a < 0

(c) a = 0

(d) a = -1.

15 The degree of a non-zero constant polynomial is

(a) 0

(b) 1

(c) 2

(d) 3.

[HOTS]

H. The sum and product of the zeroes of the polynomial $9x^2 - 5$ respectively are:

(a) 0, $-\frac{9}{5}$

(b) 0, $\frac{9}{5}$

(c) 0, $\frac{5}{9}$

 $(d) 0, -\frac{5}{9}$

If α and β are the zeroes of the polynomial $2x^2 + 5x + 1$, then the value of $\alpha + \beta + \alpha\beta$ is

(a)-2

(b) - 1

(c) 1

(d) 3 [CBSE 2012]

17. If the sum of the zeroes of the quadratic polynomial $3x^2 - kx + 6$ is 3, then the value of k is

(a) 9

(b) 3

(c) - 3

(d) 6 [CBSE 2012]

22. If a and β are zeroes of

$$p(x) = 2x^2 - x - 6,$$

then the value of $\alpha^{-1} + \beta^{-1}$ is:

 $\frac{1}{6}$

 $-\frac{1}{6}$

 $\frac{1}{2}$

 $-\frac{1}{3}$

| 8, If α and β are the zeroes of the polynomial $2x^2 + 5x + 1$, then the value of $\alpha + \beta + \alpha\beta$ is

(a)-2

(b) - 1

(0) 1

(d) 3 | CBSE 2012|

19. If the sum of the zeroes of the quadratic polynomial $3x^2 - kx + 6$ is 3, then the value of k is

(a) 9

1h 3

(c) - 3

1d) 6 [CBSE 2012]

Same and Jan Course

- 23. The age of a son is one-third the age of his mother. If the present age of mother is x years, then the age of the son after 12 years is

 - (a) $\frac{x}{3} + 12$ (b) $\frac{x+12}{3}$
 - (c) x + 4
- (d) $\frac{x}{3} 12$.
- 24. If the unit's and ten's digit of a two digit number are y and x respectively, then the number will be
 - (a) 10x + y.
- (b) 10y + x
- (c)x+y
- (d) xy.
- 25. The pair of equations

$$x = 0$$
$$y = 0$$

represents

- (a) parallel lines
- (b) coincident lines
- (c) intersecting lines and are perpendicular
- (d) non-intersecting lines.
- 26. The point of intersection of the lines represented by 3x - 2y = 6 and the y-axis is:
 - (a) (2, 0)
- (b)(0, -3)
- (c) (-2, 0)
- (d) (0, 3).

ICDER OUTOI

- 27. The area of the triangle formed by the coordinate axes and the line x + y = 6 is
 - (a) 6
- (b) 12
- (c) 18
- (d) 36.

HOTS

28. The area of the triangle formed by the coordinate axes and the line

$$\frac{x}{a} + \frac{y}{b} = 1$$
 is

- (a) ab
- $(b) \frac{1}{2}ab$
- (c)a+b
- (d) 2ab.

[HOTS]

29. The solution of the pair of equations

$$x - y = 0$$
$$2x - y = 2$$

ís

- (a) x = 1, y = 1
- (b) x = 2, y = 2
- (c) x = 3, y = 3
- (d) x = 4, y = 4.

(Hint. Test the options)

30 The solution of the equations

$$\frac{x}{a} + \frac{y}{b} = 2$$
$$ax - by = a^2 - b^2$$

is

- (a) x = a, y = b (b) x = -a, y = -b
- (c) x = a, y = -b (d) x = -a, y = b.

(Hint. Test the options)

31. The value of k for which the system of equations

$$x - ky = 2$$

$$3x + 2y = -5$$

has a unique solution is

- (a) $k = \frac{2}{3}$ (b) $k \neq -\frac{2}{3}$
- (c) $k = \frac{3}{2}$ (d) $k \neq -\frac{3}{2}$
- 32. The value of k for which the system of equations

$$3x - 4y + 7 = 0$$

$$kx + 3y - 5 = 0$$

has no solution is

- $(d) \frac{4}{6}$

33 If \triangle ABC \sim \triangle DEF, \angle C = 60°, \angle B = 75°, then \angle F =

(a) 45°

(b) 75°

(c) 60°

(d) 90°.

34 A ABC and A DEF are two similar triangles such that $\angle A = 45^{\circ}$, $\angle E = 56^{\circ}$ then $\angle C$ is equal to:

(a) 45°

(b) 56°

(c) 101°

(d) 79° [CBSE 2012]

35 The length of the shadow of a 12 cm long vertical rod is 8 cm. At the same time, the length of the shadow of a tower is 40 cm. Find the height of the tower.

(a) 60 m

(b) 60 cm

(c) 40 cm

(d) 80 cm.

36 The lengths of the diagonals of a rhombus are 8 cm and 6 cm. Then the length of each side of the rhombus is

(a) 2 cm

(b) 3 cm

(c) 4 cm

(d) 5 cm.

37. The height of an equilateral triangle of side a is

(c) $\frac{a\sqrt{3}}{2}$

 $(d) \; \frac{a\sqrt{3}}{4} \; .$

38. In a triangle, the internal bisector of an angle bisects the opposite side. Find the nature of the triangle.

(a) right angled

(b) equilateral

(c) scalene

(d) isosceles.

39. \triangle DEF $\sim \triangle$ ABC. If DE : AB = 2:3 and ar (Δ DEF) is equal to 44 square units. Then ar (\triangle ABC) in square units is:

(a) 99

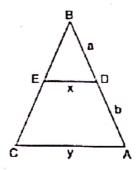
(b) 120

(d) 66

[CBSE 2012]

 $\phi \triangle ABC \sim \Delta PQR$. If $\frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta PQR)} = \frac{9}{4}$ and

AB = 18 cm, then corresponding length of PQ is:

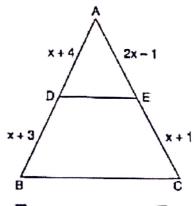

(a) 14 cm

(b) 8 cm

(c) 10 cm

(d) 12 cm

41. In the given figure, DE | AC, which of the following is true?



 $(a) x = \frac{a+b}{ay} \qquad (b) y = \frac{ax}{a+b}$

 $(c) x = \frac{ay}{a+b} \qquad (d) \frac{x}{y} = \frac{a}{b}$

[CBSE 2012]

42. In the following figure, DE || BC. Find the value of x.

(a) $\sqrt{5}$

(b) $\sqrt{6}$

(c) $\sqrt{3}$

 $(d)\sqrt{7}$.

43 If $\sin \theta = \frac{1}{2}$, then the value of

 $(\tan \theta + \cot \theta)^2$ is

- (a) $\frac{16}{3}$
- (b) $\frac{8}{3}$

(c) $\frac{4}{2}$

(d) $\frac{10}{3}$.

(a) 0

(b) 1

(c) 2

 $(d) \infty$.

45. If $\sin \theta - \cos \theta = 0$, then the value of $\sin^4 \theta + \cos^4 \theta$ is

- (a) $\frac{1}{2}$
- $(b)\frac{1}{4}$
- (c) $\frac{3}{4}$
- (d) 1

[CBSE 2012]

46 If $\tan \theta + \cot \theta = 5$, then the value of $\tan^2 \theta + \cot^2 \theta$ is:

- (a) 23
- (b) 25
- (c) 27
- (d) 15

[CBSE 2012]

47. If $\tan \theta + \cot \theta = 2$, then $\tan^2 \theta + \cot^2 \theta$ is:

- (a)4
- (b) 6
- (c) 2
- (d) 1

[CBSE 2012]

48. If $\csc \theta - \cot \theta = \frac{1}{4}$, then the value of cosec θ + cot θ is:

- (a) 4
- (c) 1
- (d)-1 [CBSE 2012]

49. If $\cos \theta = \frac{a}{b}$, then $\csc \theta$ is equal to:

- $(b) \ \frac{b}{\sqrt{b^2 a^2}}$
- (c) $\frac{\sqrt{b^2 a^2}}{b}$ (d) $\frac{a}{\sqrt{b^2 a^2}}$

$$(d) \frac{a}{\sqrt{b^2 - a^2}}$$
[CBSE 2012]

 $44 \text{ If } \theta = 45^{\circ}$, then the value of $\frac{1-\cos 2\theta}{\sin 2\theta}$ is $\frac{6}{3} \text{ If } \cot \theta = \frac{b}{a}$, then the value of

- $(a) \frac{b-a}{b+a} \qquad (b) b-a$
- $(d) \frac{b+a}{b}$.

5). If $\cos \theta = \frac{1}{2}$, then the value of

- (a) 1
- (b) 3
- (c) 4
- (d) 2.

52. If $a \cos \theta + b \sin \theta = m$ and $a \sin \theta$ $-b\cos\theta = n$, then $a^2 + b^2 =$

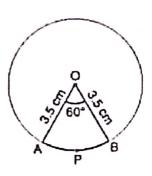
- (a) $m^2 n^2$
- (b) $n^2 m^2$
- (c) $m^2 + n^2$
- (d) m^2n^2 .

53. If $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$ and $z = r \cos \theta$, then $x^2 + y^2 + z^2 =$

- (a)r
- $(b) r^2$
- (c) $\frac{r^2}{2}$
- $(d) 2r^2$.

54, If cosec $\theta = 2$ and cot $\theta = \sqrt{3}p$, where '0' is an acute angle, then the value of 'p'

- (a)2
- (b) 1
- (c) 0
- (d) $\sqrt{3}$ [CBSE 2012]

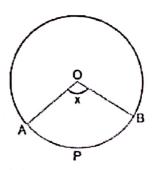

- 55. The radius of a circle is 21 cm. Find its area.
 - (a) 1386 cm^2
- (b) $2\pi(21)$ cm²
- (c) $\frac{\pi}{2}$ (21)² cm² (d) $\frac{\pi}{4}$ (21)² cm²
- 56. The diameter of a semicircle is 8 cm. Its area is
 - $(a) 2\pi \text{ cm}^2$
- (b) $4\pi \text{ cm}^2$
- (c) 8π cm²
- (d) $16\pi \text{ cm}^2$
- 57. The radii of two concentric circles are 6 cm and 4 cm. Find the ratio of their areas.
 - (a) 9:4
- (b) 3:4
- (c) 9:2
- (d)9:16
- 50. The minute hand of a clock is of length 4 cm. Find the angle swept by the minute hand in 15 minutes.
 - $(a) 90^{\circ}$
- (b) 30°
- (c) 45°
- $(d) 60^{\circ}$.
- 59. Find the area of the major segment of a circle if the area of the minor segment is 25 cm² and the area of the circle is 100 cm^2 .
 - (a) 25 cm^2
- (b) 100 cm^2
- (c) 75 cm^2
- (d) 50 cm².
- 60. In a circle of diameter 42 cm, if an arc subtends an angle of 60° at the centre

where $\pi = \frac{22}{7}$, then length of arc is:

- (a) 11 cm
- (b) $\frac{22}{7}$ cm
- (c) 22 cm
- (d) 44 cm

CBSE 20121

- [6] In given figure, there is a circle with centre O and radius 3.5 cm, the central angle is 60° then the length of OAPB
 - (a) 35 cm
- (b) 32.08 cm
- (c) 10.66 cm
- (d) 18.33 cm



[CBSE 2012]

- 62. The perimeter of a sector of a circle whose central angle is 90° and radius 7 cm is:
 - (a) 35 cm
- (b) 25 cm
- (c) 77 cm
- (d) 7 cm

LODGE GOID

63. In the following figure, O is the centre of the circle. The area of the sector OAPB is $\frac{5}{18}$ part of the area of the circle. Find the value of x.

- (a) 30°
- (b) 60°
- (c) 45°
- (d) 100°.
- 64. The radius of a circle is 5 cm. Find the area of the sector formed by an arc of this circle of length 9 cm.
 - $(a) 45 \text{ cm}^2$
- (b) 22.5 cm^2
- (c) 67.5 cm²
- (d) 2.25 cm^2 .

65 If probability of happening of an event is

 $\frac{5}{9}$, then the probability of non-happening of this event is

- (a) 0
- (b) 1
- (c) $\frac{4}{9}$
- (d) $\frac{2}{3}$ [CBSE 2012]
- 66 If the probability of an event is p, the probability of non happening of event is
 - (a) p-1
- (b) p
- (c) 1 p
- (d) $1 \frac{1}{p}$

[CBSE 2012]

- 6 ₹ If the probability of an event is 0.65, then the probability of not happening of that event is
 - (a) 0.35
- (b) 0.035
- (c) 1.25
- (d) 3

[CBSE 2012]

- 76 What is the probability that the first snowfall in Srinagar next winter will take place on Sunday?
 - $(a)\frac{1}{7}$

(b) $\frac{2}{7}$

 $(c)\frac{3}{7}$

- (d) $\frac{6}{7}$.
- If the probability of the non-happening of an event is q, then the probability of happening of that event is
 - (a) 1-q
- (b)q

 $(c)\frac{q}{2}$

- (d) 2q.
- 72 If probability of success is 0.5%, then probability of failure is
 - (a) 0.95
- (b) 0.095
- (c) 99.5
- (d) 0.995

[HOTS] [CBSE 2012]

- 68 The probability that it will rain tomorrow is 0.3. What is the probability that it will not rain tomorrow?
 - (a) 0.3
- (b) 0.2
- (c) 0.7
- (d) 0.07
- 69. Two friends were born in the year 2000.
 The probability that they have the same birth date is
 - (a) $\frac{1}{2000}$
- (b) $\frac{2}{365}$
- (c) $\frac{1}{365}$
- (d) $\frac{1}{366}$

IHOTSI ICBSE 20121

- 73A girl calculates the probability of her winning the game in a match is 0.08. What is the probability of her losing the game?
 - (a) 91%
- (b) 8%
- (c) 92%
- (d) 80% [CBSE 2012]
- 74. If p(E) = 0.05, then p(not E) is equal to
 - (a) 0.05
- (h) 0.05
- (c) 0.9
- (d) **0.95**

[CBSE 2012]